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A B S T R A C T   

Coastal marine ecosystems ensure fundamental hydro-ecological functions and support high levels of biodiver
sity, besides being an important resource for local populations. These biocenosis have been increasingly 
threatened by human pressures (e.g. pollution, overfishing) along with climate change, which may have a 
dramatic impact on them. The National Park of Banc d’Arguin (PNBA) in Mauritania, one of the biggest parks in 
Western Africa, is a RAMSAR zone (classified by UNESCO since 1989) that plays a major role in (i) the main
tenance of marine biocenosis, (ii) the protection of the ecosystems and (iii) the sequestration of carbon dioxide. 
Ecosystem databases and associated maps of the PNBA are out of date and limited to the southern and central 
parts of the park: updating is thus needed. In this paper, a supervised Support Vector Machine (SVM) was 
deployed using high-resolution images from Sentinel-2 combined with field data to map marine biocenosis of the 
PNBA. The results highlight that Sentinel-2 shows good classification accuracy for mapping marine biocenosis 
(>80% overall accuracy and a kappa index of 0.75), including seagrass beds. Also, the use of high-resolution 
sensors like SPOT-6 (1.5 m pixels) can overcome the limitations of Sentinel-2 (10 m pixels) when it comes to 
detecting small ecosystems distributed in patches. The use of freely-downloadable Sentinel-2 data, processed 
using geoinformatic freeware, make the methodology reproducible, affordable and easily transferable to local 
actors of biodiversity conservation for long term usage.   

1. Introduction 

Seagrass habitats offer a wide variety of services essential for local 
populations, in particular for subsistence fishing (Nagelkerken et al. 
2002), in West Africa (de la Torre-Castro and Rönnbäck, 2004). They 
also ensure fundamental hydro-ecological functions such as sediment 
stabilization and protection of the coastline from erosion by reducing 
the strength of waves and tidal current energy (Barbier et al., 2011; Chen 
et al., 2007; Ondiviela et al., 2014), cycling of nutrients (Duarte, 1990; 
Evrard et al., 2005; Romero et al., 2006) and carbon (Duarte et al., 2010; 
Fourqurean et al., 2012; Kennedy et al., 2010), and support of high-level 
biodiversity (Coll et al., 2010; Unsworth and Cullen-Unsworth, 2014). 

Despite their importance, seagrass beds are particularly threatened, 
resulting in a degradation of their habitat and a decline in their global 
surface for the past decades (Duarte, 2002; Orth et al., 2006; Waycott 
et al., 2009). The degradation of seagrass meadows is a complex process 
caused by several interlinked variables, coming both from anthropic 
(pollution, resource overexploitation, landscape change, etc.) and 
environmental pressures (geological events, biological interactions such 
as sediment bioturbation or disease (Short and Wyllie-Echeverria, 
1996); sea-level change, physical modification of coastlines, and 
global changes in atmospheric CO2 concentration and water tempera
ture (Orth et al. 2006); extreme climate events (McKenzie and Yoshida, 
2020); marine heat waves (Strydom et al., 2020)), making it a difficult 
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process to monitor and understand. Given the importance of this com
plex ecosystem, the conservation status of seagrass beds is considered an 
effective indicator for the overall health of marine and coastal 
ecosystems. 

Remote sensing has been used for decades to monitor the spatio- 
temporal evolution of these ecosystems (Hossain and Hashim, 2019; 
Hossain et al., 2015; Short and Coles, 2001). Seagrass beds have been 
monitored using various remote sensing data such as aerial photography 
(Ferguson et al., 1993; Kendrick et al., 2002; Kirkman, 1996), satellite 
imagery (Kovacs et al., 2018; Lyons et al., 2011, 2013; Pu and Bell, 
2017; Topouzelis et al., 2018; Yang et al., 2017) and, more recently, 
drone imagery (Phinn et al., 2018). Authors highlight difficulties they 
have encountered to map seagrass beds due to the complexity and di
versity of the local environment which represent a big challenge, in 
particular, the difficulty to separate seagrass from other classes and 
among each other. Indeed, the presence of the water column and its own 
characteristics (depth, color, turbidity, sediment content, etc.) have a 
significant impact on the absorption of the spectral signatures of the 
seagrass and cause confusions (Dobson, 1995; Green et al., 1996; Kovacs 
et al., 2018; Kutser et al., 2003, 2020; Lee and Carder, 2002; McKenzie 
et al., 2001; Phinn et al., 2008; Vahtmäe et al., 2020). Only a few of these 
studies relate to West Africa, where there is still limited knowledge of 
seagrass distribution and their evolution, though this information is an 
essential prerequisite for assessing the ecosystem services seagrass beds 
provide. Furthermore, these data are often outdated and fragmented, 
which is the case for the National Park of Banc d’Arguin (PNBA) in 
Mauritania. 

Maps of the distribution of marine biocenosis of the PNBA have 
already been produced within the framework of the PACOBA project 
(Projet d’Approfondissement des connaissances scientifiques de 
l’écosystème du Golfe du Banc d’Arguin, 2012) from SPOT-5 images of 

2003 and 2007. However, cartographic knowledge and ecosystems 
distribution are outdated, limited to the southern and central parts of the 
park, and details on the methods and the accuracy of their results are 
insufficient. It is therefore necessary to update the ecosystem mapping of 
the PNBA with an approach that can be easily implemented for long- 
term monitoring. In this study, we propose an approach using 
Sentinel-2 images combined with field data (more than 500 points) to 
map marine biocenosis of the PNBA, with a particular interest for sea
grasses. We aim at developing a methodology for processing these data, 
easily replicable by local conservation agencies for future map updates 
and assessment of ecosystem services. 

2. Study area and data 

2.1. Study area 

The PNBA is a natural reserve in Mauritania, founded in 1976 by the 
President of the Islamic Republic of Mauritania, Mokhtar Ould Daddah, 
in consultation with the French naturalist Theodore Monod (Ould 
Cheikh 2002a,b). Covering a third of the Mauritania coastline, it extends 
from Pointe Minou in the north (beyond Cape Arguin) to the village of 
Mamghar in the south (beyond Cape Timiris), and includes the islands of 
Arguin and Tidra. The PNBA covers 12 000 km2, divided between the 
maritime part (the Atlantic Ocean) and the continental part (the Sahara 
Desert, Fig. 1) and is, therefore, one of the largest natural reserve in West 
Africa. The PNBA is characterized by high productivity, sustained by the 
enriched coastal waters, due to the upwelling offshore and wind-driven 
Sahara dust (Demarcq and Faure 2000). For the high productivity, the 
diversity of coastal marine habitats, and their importance for a large 
population of migrating birds, the PNBA was recognized as a RAMSAR 
site in 1982 and a UNESCO World Heritage Site in 1989. Tidal marshes 

Fig. 1. Study area, showing the extent of the PNBA in Mauritania (on the left, background made with Natural Earth. Free vector and raster map data @ natural
earthdata.com) and the mosaic of the Sentinel-2 images (on the right). 
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in the PNBA constitute a unique ecosystem with the very northernmost 
mangrove formations (Avicennia germinans) and southernmost spartina 
meadows (Spartina maritima) in West Africa (Lebigre, 1991). The 
northern part of the PNBA shelters habitats for the meagre (Argyrosomus 
regius) and elasmobranchii species (sharks and rays), which are particu
larly abundant in the waters of the park (Revillion, 2010; Revillion et al., 
2011; Sevrin Reyssac and Richer de Forges, 1985), though difficult to 
map by satellite images because of the depth and turbidity of these areas. 
Intertidal areas cover much of the southern part of the PNBA; they are 
composed of shallow mudflats, crossed by channels and largely covered 
with seagrass beds (Eelgrass: Zostera noltii and Cymodocea: Cymodocea 
nodosa). 

The Park plays a crucial role in the protection of those ecosystems 
and the provision of associated services in the Gulf d’Arguin. Indeed, the 
Park is essential for the renewal of fisheries resources in the exclusive 
economic zone of Mauritania (Guénette et al., 2014) and more broadly 
at a sub-regional level and in the sequestration of atmospheric carbon in 
a country with low terrestrial vegetation. Conservation of the natural 
environment and sustainable development of populations are the main 
objectives of the PNBA. 

2.2. Satellite images 

Satellite images were acquired at low tide, as much as possible 
during a high coefficient tide, for two reasons:  

– a large part of the intertidal seagrass meadows emerged;  
– for subtidal seagrass beds, the water depth was smaller, which 

minimizes the effect of absorption of the spectral wavelength by 
water and thus facilitated their detection. 

Given the size of the PNBA, two Sentinel-2 images (tiles T28QCG and 
T28QCH, 10 m spatial resolution, Fig. 2) of the 22 February 2018, taken 
at low tide (0.5 m at 11 h33, time of acquisition), were used to cover the 
entire park and to identify marine and terrestrial ecosystems, including 
intertidal seagrass beds, mudflats, salt marshes, and mangroves. 
Although less spatially resolved than the SPOT-5 image from 2007 
(2.5 m) used in the PACOBA project, with a resolution of 10–60 m 
depending on the spectral bands (Table 1), Sentinel-2 images have the 
advantage of being easily accessible and at no cost with a 12-day revisit 
time over Mauritania providing access to optimal cloud and tidal con
ditions, for regular updating of the maps produced in the framework of 
this project, and requiring limited computing resources for the pro
cessing of the data. In addition, we also downloaded 4 more Sentinel-2 
images on our study area between December 2017 and February 2018 
(12/09/2017, 12/24/2017, 01/08/2018, 02/27/2018) to test the 
robustness of the method on the maritime part, focusing on seagrass. 
Images were chosen according to match different criteria: tide 

coefficient (around 0.5 m tidal height, in order to maximum water 
transparency, minimum sun and sky glint), cloud cover (<0.5%) and 
period of acquisition (close to the field mission with a small gap between 
dates). The choice to use images with a short-range period between 
acquisitions is to ensure the stability of meadows at this period since this 
kind of ecosystem can have an important spatio-temporal variation in a 
short laps of time, especially in case of high tides or storm. 

2.3. Turbidity and bathymetric products 

A bathymetric map was provided by the Mauritanian Institute of 
Oceanographic Research and Fisheries (French: Institut Mauritanien de 
Recherches Océanographiques et de Pêches, IMROP). This product 
consisted of a bathymetric survey every 5 m and was intended to be used 
to correct water column on the image, based on a modeling approach 
linking the measured luminance to the parameters of the target 
(meadows or/and substrate), to the parameters of the water interposed 
between the sensor and the target. This physical approach would have 
required:  

– a model of the bottom depth (related to bathymetry and tides)  
– an attenuation model of irradiance and reflected signal depending on 

the water column and turbidity 

However, the resolution of the bathymetric product was not suffi
cient to be effectively exploited for mapping purposes using satellite 
images with a resolution of 10 m since the intertidal zone ranges from 
0 to 5 m and it would have required measurements of seagrass spectral 
signature in water. Therefore, the bathymetric product was only used to 
exclude areas deeper than 10 m, where seagrass beds are less likely to be 
present given the local turbidity. 

In theory, turbidity effects should also have been corrected during 
the pre-processing of Sentinel-2 data using turbidity products. However, 
water turbidity depends on the strong spatio-temporal variation related 
to the seasonal cycle of phytoplankton growth (phytoplankton blooms), 
the upwelling phenomenon, and the presence of strong currents gener
ated by the filling and emptying of the bay during the tidal cycle. Thus, it 
is very difficult to correct for water turbidity due to the multiplicity of 
phenomena involved. That is why we chose the 5 Sentinel 2 images to 
work with very carefully in order to minimize such effects, by favoring 
low tide images (with high tide coefficient) with maximum water 
transparency. This is made possible by the temporal repeatability of 
Sentinel-2 acquisitions. Yet, when some corrections are needed, there 
are now various method available to map water quality (Chl-a, CDOM, 
TSS, turbidity…) with Sentinel 2 (Al-Kharusi et al., 2020; Bramich et al., 
2021; Caballero and Stumpf, 2020; Sòria-Perpinyà et al., 2021; Vahtmäe 
et al., 2020). 

Table 1 
The spectral band features of the Sentinel-2 sensor.    

S2A S2B  

Band Number Band Name Central wavelength (nm) Bandwidth (nm) Central wavelength (nm) Bandwidth (nm) Spatial resolution (m) 

1 Coastal aerosol 442.7 21 442.3 21 60 
2 Blue 492.4 66 492.1 66 10 
3 Green 559.8 36 559.0 36 10 
4 Red 664.6 31 665.0 31 10 
5 Vegetation red edge 704.1 15 703.8 16 20 
6 Vegetation red edge 740.5 15 739.1 15 20 
7 Vegetation red edge 782.8 20 779.7 20 20 
8 NIR 832.8 106 833.0 106 10 
8A Narrow NIR 864.7 21 864.0 22 20 
9 Water vapour 945.1 20 943.2 21 60 
10 SWIR - Cirrus 1373.5 31 1376.9 30 60 
11 SWIR 1613.7 91 1610.4 94 20 
12 SWIR 2202.4 175 2185.7 185 20  
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2.4. Field data 

Marine and terrestrial ecosystems were sampled during a field 
mission carried out from 8 to 25 April 2018 (Fig. 2). We collected 
approximately 500 points on the field (Table 2), 311 of which on the 
marine part (classes 1, 2, 5 and 6 on the land cover classification) and 
214 on the intertidal area (classes 3, 4 and 7 on the land cover classi
fication). 70% of these points were used as a training sample and 30% 
were used to validate cartographic observations from satellite images. 
To select the training sample, we used the random selection tool of QGIS, 
which allows to select random points in a layer for each class based on a 
certain percentage. An overview of the basic statistics of these field 
datasets was computed, as boxplots, using R language on R Studio and 
can be seen in the result section. To compute these statistics, all the 
points (both training and validation points) were used. We also collected 
about 30 points on the terrestrial area (classes 8, 9 and 10) that were also 
used to train the algorithm but not for the accuracy since it was not the 
main purpose of the study. Though the terrestrial part of the PNBA was 
not a major issue for our study, we decided to use the points acquired in 
the field in order to enhance the value of datasets. 

The sampling strategy was driven by the size of the PNBA and the 
availability of cars and boats to cover the larger area possible. Since we 
had a limited access to such vehicles, the sampling can seem limited in 
coverage and heterogeneous since some points are gathered in limited 
geographical areas (Fig. 2a). The heterogeneity in the number of sam
ples per class is also the reflection of class distribution on the ground. For 
instance, the geographical extent of mangroves is extremely limited 
compared to the extent of seagrass. However, a particular interest was 
dedicated to the northern part of the park that was poorly known. 

On the field, for each point we sampled, the location was registered 
using a Garmin GPSMAP 65 series and the type of land cover reported. 
For seagrass, a qualitative assessment of the density was also carried out, 
using a 3 class qualitative description: low-density, medium density and 
high density. 

3. Method 

To map the entire extent of the PNBA, we used the image of the 22 
February 2018. Then, for the four other dates, only the maritime part 
was mapped in order to assess the robustness of the method for mapping 
seagrass. The classification process applied on Sentinel-2 imagery for the 
mapping of marine and terrestrial ecosystems of the PNBA is presented 
in Fig. 3. Pre-processing and processing steps of the Sentinel-2 imagery 
used in this study were carried out on free software such as R (R Core 
Team, 2019), Orfeo Toolbox and QGIS. 

Level 1C Sentinel-2 data were downloaded on the Copernicus Open 
Access Hub (https://scihub.copernicus.eu/dhus/#/home). Atmospheric 
corrections and production of level 2A data were performed using the 
processor ACOLITE (Atmospheric correction for OLI ‘lite’) developed by 
the Royal Belgian Institute of Natural Sciences (Vanhellemont and 
Ruddick, 2018; Vanhellemont, 2019). ACOLITE combines the atmo
spheric correction algorithms for aquatic applications of Landsat and 
Sentinel-2 as well as other sensors, and was released to the public in 
April 2021. ACOLITE allows simple and fast processing of imagery from 
various satellites, including Sentinel-2/MSI (A/B), for coastal and inland 
water applications. The Dark Spectrum Fitting atmospheric correction 
algorithm works especially well for turbid and productive waters, but 
can also be applied over clear waters (https://github.com/acolite/acolit 
e). Pereira-Sandoval et al. (2019) evaluated different methods for the 
preprocessing of Sentinel-2 data for applications regarding shallow 
waters. Comparing in situ measurements and satellite reflectance, they 
showed that processors like ACOLITE perform well in complex envi
ronments like hypertrophic or meso-trophic environments. This the case 
of the PNBA, an area where a strong oceanic dynamic occurs with the 
Mauritanian upwelling and sedimentary contribution from the Sahara 
affecting coastal waters. Besides, ACOLITE also enables the resampling 

of the data at 10 m resolution and the merging of the 2 tiles into one 
single image. 

Spectral signatures for each class were extracted from the 4 spectral 
bands (NIR, red, green and blue) of the Sentinel-2 image of the 22 
February 2018 using the field points on R Studio and summarize as 
boxplots (Frigge et al., 1989; Williamson et al., 1989). 

To map the marine ecosystems of the PNBA, we only used 4 bands of 
the Sentinel-2 sensor: Near Infrared (NIR), red, green and blue bands. 
Indeed, visible bands (red, green, and blue) are the only bands that are 
not completely absorbed by water, contrary to NIR or short-wave 
infrared (SWIR) that are absorbed even in shallow water (Dekker 
et al., 2007; Hossain et al., 2015). NIR band was only used to compute 
the normalized difference water index - NDWI (McFeeters, 1996) and 
the normalized difference vegetation index - NDVI (Rouse et al., 1974; 
Tucker et al., 1979). Both Sentinel-2 tiles were pre-processed similarly 
and, in order to minimize computing resources and processing times, 
calculations were limited to the geographical extent of the PNBA 
(Fig. 2). The 10 m bathymetric contour line was also used offshore to 
delimitate the extent of the area where seagrass is likely to be present 
(below 10 m in depth, turbidity is too high to allow seagrass growth in 
the Banc d’Arguin). 

NDVI and NDWI were used to create three masks over the park: a 
‘water’ mask containing the marine part including the subtidal and 
intertidal flats, a ‘land’ mask containing the continental part of the park 
and a ‘transition’ mask corresponding to the buffer area between marine 
and terrestrial areas of the park (including mangrove, sebkha and salt 
marsh ecosystems). These masks help to reduce radiometric confusion in 
this complex environment, thus increasing the accuracy between clas
ses. Besides, the role of these masks was also to minimize computing 
resources and processing times by not processing all the extent of the 
park at a time but zone by zone. Finally, it also allowed us to focus on the 
areas we were interested in: maritime part where seagrasses are located 
and, to a lesser extent, the intertidal part where you can find the 
mangroves. 

We performed supervised classifications on each of those three masks 
using the SVM (Support Vector Machine) algorithm on the open-source 
software Orfeo Toolbox. SVM is a widely used machine learning algo
rithm in remote sensing. The SVM algorithm was first developed for 
statistical purpose (Vapnik, 1995) and its use in remote sensing began to 
grow in the 2000s and increased in the late 2000s (Mountrakis et al. 
2011). SVM algorithm aims to find the optimal hyperplane of the 
training samples to separate classes between them. Thus, the algorithm 
will try to maximize the margin between the samples and the hyperplane 
separator to minimize classification errors. We made the choice to use 
SVM rather than another supervised machine learning algorithm for 4 
reasons: (1) the functioning of SVM allows to use few training points 
while guaranteeing good results (Foody and Mathur, 2004a); (2) SVM 
method often gives good results in complex and noisy data (Poursanidis 
et al., 2018); (3) several recent studies on mapping optically shallow 
habitats were carried out using SVM and showed good results accuracy 
so we also used SVM classifier (Bakirman et al., 2016; Eugenio et al., 
2015; Poursanidis et al., 2018, 2019; Traganos and Reinartz, 2018; 
Traganos et al., 2017, 2018; Zhang, 2015); and (4) some of these studies 
showed that SVM performed better results than RF or Maximum Like
lihood (Traganos and Reinartz, 2018; Traganos et al., 2018) while other 
studies (not on seagrass, though) also showed that SVM can be more 
accurate than popular contemporary techniques such as neural networks 
and decision trees as well as conventional probabilistic classifiers such 
as the maximum likelihood classification (Foody and Mathur, 2004b; 
Huang et al., 2002). For our classifications, 70% of the field samples 
were used as training data and 30% for validation. For the “water” part, 
we only used the red, green, and blue bands to limit spectral wave ab
sorption by water, while the SVM classifier was performed on the three 
bands plus the near-infrared band for the “transition” and “land” part. 
Then, we merged the three classifications to produce a 10-classes map of 
the ecosystems of the PNBA, including the two species of seagrass, 
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Fig. 2. a- Field sampling (yellow dots) on marine and terrestrial ecosystems in the National Park of Banc d’Arguin (PNBA), including a total of more than 500 points; 
b- seagrass beds (Cymodocea nodosa); c- rocky sand, d- sebkha (flat-bottomed depressions, generally floodable, where salty soils limit the development of vegetation); 
e- seagrass beds (Zostera noltii); f- mangrove; g- dune cord. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 
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mangroves, salt marshes, mudflats, bare intertidal sediments, sebkha, 
bare sand, vegetated sand and rocky sand (Fig. 5). Finally, we applied a 
majority filter on the classification to eliminate over-detection due to 
isolated pixels. 

In addition, we also performed supervised classification using the 
SVM classifier, only on the maritime part, for the images of the 9 
December 2017, the 24 December 2017, the 8 January 2018 and the 27 
February 2018. This additional step was in order to assess the robustness 
of the method for mapping seagrass. We decided not to restart classifi
cations on all the extent of the PNBA for 3 reasons: (1) the study focuses 
mainly on seagrass; (2) other classes like mangroves, salt marshes or 
sebkha do not change a lot in such a short time; (3) time saving. 

The last important step before validating the classifications was to 
assess its accuracy using a confusion matrix (Congalton and Green, 
1999; Congalton, 1991). This process will compute an error matrix 
giving the information about accuracy, F-score and Recall of each class 
as well as the overall accuracy and the Kappa index (Landis and Koch, 
1977; Cohen, 1960) of the classification. As discussed in section 2.4, we 
used 30% of the samples to compute the confusion matrix. The confu
sion matrix was calculated for all the classes (exept those of the terres
trial part) for the image of the 22 February 2018 and only on the 
maritime part for the other classifications. 

4. Results 

4.1. Field sample statistics 

The spectral signatures of the 7 classes of the classification were 
extracted from the 4 spectral bands (NIR, red, green and blue) of 
Sentinel-2 image (22 February 2018) to show the spectral separability 
among them and are visible in Fig. 4 below (Fig. 4). 

These statistics showed that seagrass Zostera and seagrass Cymodocea 
have very close spectral responses in the 4 spectral bands except in the 
NIR band. In the visible bands, we observed close responses with some 
variability in the red part of the spectrum, as it has also been shown in 
other studies (Kutser et al., 2006, 2020; Matta et al., 2014; Roelfsema, 
unpublished; Vahtmäe et al., 2006). They also showed that both species 
have very close spectral responses in the green and blue band but less in 
the red band. Thus, it is practically impossible to separate these species 
using only multispectral data (2020;; Paringit et al., 2003). 

For the other classes, we observed close spectral responses between 
mangroves and salt marshes except in the red band. However, the two 
ecosystems occur together at the same locations with a low spatial dis
tribution, where mangroves are often in small patches of small density. 
Thus, it can be difficult to separate the two ecosystem at this resolution 
due to mixed pixel. For mudflat, we observed some similar spectral re
sponses with intertidal bare sediment in the NIR and red band but less in 
the green and blue band. Both ecosystem should be differentiable, 
though they might be some confusion. Finally, Sebka showed important 
spectral responses with all the classes except for some similarities with 
interdial bare sediment. However, since we used masks to separate the 
maritime part and the intertidal part, there should not be confusion 
between these two classes. 

4.2. Classification 

We produced a 10-class land cover map of the marine and terrestrial 
ecosystems of the PNBA (Mauritania) for the image of the 22 February 
2018. While previous studies of the marine ecosystems of the park only 
focused on the central area, around Tidra island (see results from 
PACOBA), we mapped the entire extent of the park (Fig. 5) updating 
knowledge on the distribution of seagrass species and other ecosystems 
to the northern (Agadir, Fig. 6a) and southern (Mamghar, Fig. 7a) areas. 
We also produced 4 land cover maps of 4 classes (seagrass Cymodocea, 
seagrass Zostera, mudflat and intertidal bare sediment) on the maritime 
part, one for each other date (12/09/2017, 12/24/2017, 01/08/2018 
and 02/27/2018). 

Most of the seagrass beds are distributed around the central island of 
Tidra. Zostera noltii beds were identified on flats at low tide (Fig. 6b), 
Cymodocea were located in areas covered in water like the edges of the 
channels (Fig. 7c) and small intertidal ponds (Fig. 6c) on the flat areas at 
low tide. Both species are submerged at high tide, making them difficult 
to detect, if not impossible. The distribution of mangrove forests is 
extremely limited with small patches north of Mamghar and Tidra 
(Fig. 7a, 7b and 7d). Finally, the transition areas between sandy land and 
seagrass, as found around Tidra Island or in the southern part of the 
park, are composed of mudflats, salt marshes (Fig. 7e) and sebkhas, 
which are flood topographic flat-bottomed depressions in which the 

Fig. 3. Classification process applied on Sentinel-2 imagery for the mapping of 
the ecosystems of the National Park of Banc d’Arguin, Mauritania. 

Table 2 
Details of samples acquired during field mission.  

Class Total 
number of 
points 

Number of 
points used for 
training 

Number of points 
used for 
validation 

Seagrass Cymodocea 
(1) 

115 75 40 

Seagrass Zostera (2) 102 65 37 
Mangroves (3) 62 40 22 
Salt marshes (4) 75 50 25 
Mudflats (5) 50 35 15 
Intertidal bare 

sediments (6) 
43 30 13 

Sebkha (7) 69 45 24 
Bare sand (8) 15 15 – 
Sandy soil with 

vegetation more or 
less dense (9) 

7 7 – 

Rocky Sand (10) 8 8 –  
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growth of vegetation is limited by salty soils. 
Using the confusion matrix, for the classification of the 22 February 

2018 in 7 classes, we assessed the overall accuracy of the classification to 
71.6% with a Kappa index of 0.66 (Table 3). For the same date but 
without distinctition of seagrass (Class 1 and 2 were merged), we ob
tained an overall accuracy of 86.8% and a Kappa index of 0.82 for the 
classification (Table 3). Both results are satisfying given the environ
ment’s complexity of the study area. 

For the 5 classifcations on the maritime part with seagrass Cymodo
cea and Zostera separated, we assessed the average of the overall accu
racy of 63.8% with a minimum of 62.5% and a maximum of 69.2% and 
an average kappa index of 0.47 with a minimum of 0.45 and a maximum 
of 0.55 (Table 4). For the 5 classifications, we assessed the average of the 
overall accuracy of 92.7 with a minimum of 91.3% and a maximum of 
95.2% and an average kappa index of 0.82 with a minimum of 0.78 and 
a maximum of 0.88 (Table 5). Other detailed confusion matrices can be 
found in the supplementary material. 

A comparison between a SPOT-5 image from 2003 used in the 
PACOBA project and the Sentinel-2 image of February 2018 evidences 
the variability in the spatial distribution of the seagrass, especially in the 
Tidra area (Fig. 8). The first image (Top) shows the SPOT-5 image from 
2003 in false color where the seagrass appear in red while the second 
image (Bottom) shows the Sentinel-2 image from 2018 also in false 
color. 

On the basis of the maps, we estimated the surfaces covered by each 
ecosystem. Reference values for the PNBA from previous studies were: 
450 km2 of Zostera noltii, 374 km2 of Cymodocea nodosa and 5 km2 of 
mangroves. The extents calculated in this study are presented in Table 6. 

5. Discussion 

5.1. Classification accuracy 

Several confusion matrices were produced for the Sentinel-2 classi
fications, using Orfeo Toolbox, focusing on Zostera noltii and Cymodocea 
nodosa seagrass species, which were the primary targets of this research 
project. However, as we encountered some confusion between seagrass, 
salt marshes, and mangroves, we also considered those ecosystems for 
estimating the classification accuracy. Since the terrestrial area was not 
the main focus of our study, we did not take into account the 3 land 
classes in the accuracy assessment of the classification. 

For the classification of the 22 February 2018, Sentinel-2 offered an 

overall accuracy of 95% with a recall of 1 and an F-score of 0.97 in the 
detection of seagrass (Table 3). Given the resolution of the images 
(10 m), the complexity of the seagrass ecosystem, and the variable size 
of patches observed on the field, we consider this result to be satisfac
tory. However, the intra-class classification of seagrass (i.e. the ability to 
discriminate the seagrass species) was less satisfying. Many confusions 
are identified between seagrass species and with other classes, in 
particular intertidal bare sediments. Indeed, Zostera reached 58.5% ac
curacy with a recall of 0.64 and an F-score of 0.61, while Cymodocea had 
an overall accuracy of 66.7% with a recall and F-score of 0.65 and 0.66 
respectively. Several factors can explain this result: at a resolution of 
10 m, in low-density seagrass beds, the substrate can contaminate the 
entire pixel, which is then attributed to the « intertidal bare sediment » 
class when it is, in reality, a mixed pixel. Radiometrically, the discrim
ination between the two species of seagrass is challenging at this reso
lution, accounting for the good overall accuracy of the seagrass class but 
the low intra-class accuracy. Moreover, although the images were ac
quired at low tide, part of the study area is still submerged. The presence 
of water induces radiometric disturbances causing misclassifications. It 
shows how important it is to take into account the presence of water on 
the image and to correct for the water disturbances on the signal, using 
bathymetry, turbidity, and tide models combined to in situ spectral 
measurements. None of these data were available in this study and we 
were not able to perform any of these corrections. This aspect would be a 
great improvement for future updates of the distribution of seagrass 
species in the PNBA. 

We obtained 100% accuracy for mangroves, but the recall and F- 
score are only 0.32 and 0.48, respectively. These results mean that pixels 
proposed as mangroves by the classification are indeed mangroves, 
hence the 100% accuracy, but also that the classification missed a lot of 
mangrove pixels, resulting in a low recall and F-score. These results can 
be explained by the substantial confusion between mangroves and salt 
marshes since the two ecosystems occur together at the same locations, 
with limited distribution on relatively small surface areas, where man
groves are often in small patches of small density. The confusion matrix 
supports this theory since out of 22 mangrove points, 7 were correctly 
identified as mangroves, but 12 as salt marshes and the other points as 
mudflats and bare intertidal sediments. The reflectance of low-density 
mangroves was contaminated by the radiometric background of salt 
marshes, hence misclassifications. This explains why we only detected 
0.5 km2 of mangroves against the reference area of 5 km2. 

However, for salt marsh, we have a reliable recall of 0.8 but a 

Fig. 4. Boxplots showing the statistics of the 7 classes on the 4 spectral bands for the image of the 22 February 2018. B8: Near Infrared; B4: red; B3: green; B2: blue. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Mapping of the entire extent of the National Park of Banc d’Arguin, Mauritania.  
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Fig. 6. Mapping of marine and terrestrial biocenosis of the northern and central part of the PNBA using Sentinel-2 imagery. a- northern part (Agadir), b- seagrass 
partly submerged near sandbanks, c- Cymodocea seagrass in small intertidal ponds, d- central part (Tidra island and surroundings). 
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moderate accuracy of 61%, which gives us an F-score of 0.69. It means 
that the classification identified a lot of true salt marsh pixels, but also 
false salt marsh pixels, hence the overdetection of salt-marsh. 

For mudflats and bare intertidal sediments, we obtained an accuracy 
of 85.7% and 78.6%, a recall of 0.8 and 0.85 and an F-score of 0.83 and 
0.81, respectively. We can notice some confusion between mudflats and 

Fig. 7. Mapping of marine and terrestrial biocenosis of the southern part of the PNBA using Sentinel-2 data. a- overview of the southern part, b- detail of the 
southern-west extremity of the park (near Mamghar) where small patches of mangroves are located, c- Zostera noltii beds with partly emerged Cymodocea, d- 
mangroves (Avicennia germinans), e- salt marshes. 

Table 3 
Detailed confusion matrix for 02/22/2018. Class 1*: Seagrass without distinction; Class 1: Seagrass Cymodocea; Class 2: Seagrass Zostera; Class 3: Mangroves; Class 4: 
Salt marshes; Class 5: Mudflat; Class 6; Intertidal bare sediment; Class 7: Sebkha.   

1* 1 2 3 4 5 6 7 Total 

1* 77 – – 0 0 0 0 0 77 
1 – 26 14 0 0 0 0 0 40 
2 – 13 24 0 0 0 0 0 37 
3 1 0 1 7 12 1 0 0 22 
4 0 0 0 0 23 1 0 1 25 
5 1 0 1 0 0 12 2 0 15 
6 2 0 2 0 0 0 11 0 13 
7 0 0 0 0 0 0 1 23 24  

Total 81 39 42 7 36 14 14 24 176 
Class specific precision (%) 95 66.7 58.5 100 61 85.7 78.6 82 – 
Class specific recall 1 0.65 0.64 0.32 0.8 0.8 0.85 0.96 – 
F-score 0.97 0.66 0.61 0.48 0.69 0.83 0.81 0.88 – 
Overall accuracy – – – – – – – – – 
with distinction of seagrass – – – – – – – – 71.6 
without distinction of seagrass – – – – – – – – 86.7 
Kappa index – – – – – – – – – 
with distinction of seagrass – – – – – – – – 0.66 
without distinction of seagrass – – – – – – – – 0.8  
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bare intertidal sediments, which can be explained by their close nature 
(radiometrically), but also with seagrass beds. Finally, sebkha obtained 
82% accuracy, 0.96 recall and 0.88F-score which is a good result. 

For the 4 other classifications (12/09/2017, 12/24/2017, 01/08/ 
2017 and 02/27/2018) on the maritime part with seagrass Cymodocea 
and Zostera separated, we obtained similar results between the classifi
cation of the 22 February 2018 and the other classifications (detailed 
confusion matrices can be found in the supplementary material). Indeed, 
we observed same confusions between intra-class classification of sea
grass with respectively 57.4%, 56.7%, 54.4%, 66.7% and 58.3% of ac
curacy for Cymodocea seagrasss and 55.6%, 60%, 52.4%, 58.5% and 
57.1% for Zostera seagrass (Table 4). As for the recall and F-score, we 
obtained respectively between 0.65 and 0.86 of recall with an average of 
0.78 and between 0.6 and 0.7 with an average of 0.66 for F-score for the 
class seagrass Cymodocea and between 0.3 and 0.6 of recall with an 
average of 4 and between 0.38 and 0.62 with an average of 0.46 for F- 
score for the class seagrass Zostera (Supplementary data 1–5). We also 
found the same confusion between mudflat and intertidal bare sediment 
with respectively 90%, 90%, 86.7%, 100% and 100% accuracy for 
mudflat and 76.9%, 71.4%, 90.9%, 83.3% and 66.7% for intertidal bare 
sediment. Besides, statistics results were similar if we compared classi
fications with seagrass merged into one single class (Table 5). Thus, 
these results show that our method is robust to map seagrass since we 
obtained similar statistics results at different dates, though the intra- 
class detection should be taken with caution since spectral discrimina
tion of seagrass at species level using multispectral sensor is pratically 
impossible. 

5.2. Extent of the ecosystems 

For Sentinel-2 in 2018, the calculated extents are closed to the ones 
obtained in the PACOBA project from 2003 imagery (total seagrass 
surface of 772 km2). We detected 353 km2 of Zostera seagrass, which is 

100 km2 less than the surface detected in 2003 with the SPOT-5 image, 
and 419 km2 of Cymodocea seagrass, compared to the reference value of 
374 km2, which is around 45 km2 more than the previous result. Thus, 
we detected a total of 772 km2 of seagrass, which is almost the same as 
the reference (774 km2). Our results highlight a very high overall sta
bility of this ecosystem, despite the high spatial variability of its distri
bution over time (Fig. 8). The detection difference between the surfaces 
is explained by the strong spectral similarity between Zostera and 
Cymodocea causing misclassifications. For mangroves, the detected 
surface in 2018 were lower than the reference due to the change in 
spatial image resolution from SPOT-5 (2.5 m) to Sentinel-2 (10 m), 
combined to the small size of mangrove patches. Finally, we detected 
slightly less mudflat coverage than the reference, due to misclassifica
tion with bare intertidal sediments, which has a similar spectral 
response. 

5.3. Seagrass density estimation from Sentinel-2 imagery 

During the field acquisition in April 2018, we collected data on 
seagrass density (Low, Mean, High). Next, we attempted to use these 
data to extrapolate the density of seagrass beds based on the Sentinel-2 
radiometry. The results are very unsatisfactory because only 20% of 
measured densities agree with densities extracted from radiometry. The 
low accuracy might result from the 10-m resolution of Sentinel-2, as 
estimated densities were averaged over 100 m2 areas, while densities on 
the field were probably representative of a smaller area. Fig. 9 in
troduces a map of seagrass densities from the spectral signal around 
Tidra island, with three classes: high density, medium density, and low 
density for Zostera noltii and Cymodocea nodosa. 

5.4. Insights from the 1.5 m resolution data 

In the frame of this study, we were able to access a limited amount of 
very high-resolution archive data from SPOT-6 satellite in the northern 
part of Mamghar, where the majority of mangrove forests are present in 
the park, provided freely by EQUIPEX GEOSUD (http://ids.equipex- 
geosud.fr) and dated January 24th, 2016 (no data were available for 
2018 on the study area). The data, at 1.5 m resolution, were already 
preprocessed (ortho-rectification and pan-sharpening) by GEOSUD and 
were composed of 4 bands (Red, Green, Blue, and Near Infrared). We 
found that Sentinel-2 high-resolution was likely to over-estimate the 
extent of mangroves in the PNBA due to a large number of mixed pixels 
classified as mangroves. The SPOT-6 very high resolution allowed a fine 
detection of mangroves, even small objects, which is more suitable in the 
PNBA, given the patchy and scarce distribution of mangroves (Fig. 10). 
However, besides being “freely available” data, the use of SPOT-6 data 
requires important resources in terms of processing power, calculation 
time and storage. Therefore, a very high resolution should be used for 
small study areas or local applications, while high spatial resolution 
such as Sentinel-2 is more suitable for larger areas, like the PNBA. 

6. Applications of the mapping of marine coastal ecosystems in 
the PNBA 

The mapping of marine ecosystems of the PNBA using Sentinel-2 
provides up-to-date knowledge on their distribution and extent. We 
showed that Sentinel 2 has a strong potential for this matter thanks to 
the temporal repetitivity that allows access to high quality imagery 
(maximum water quality), free of charge, on large areas. Many algo
rithms are available to preprocess coastal waters and map water quality 
using Sentinel 2. The reproducibility of our supervised approach is very 
dependent on the availability of field data availability and quality for the 
training of the algorithm and validation. This is a limitation than can be 
overcome using available products provided by ESA for instance. Such 
mapping is an essential prerequisite for the assessment of ecosystem 
services in the PNBA (Trégarot et al. 2018). 

Table 4 
Summary of the confusion matrices of the 5 classifications on the marine part 
(distinguished seagrass).   

12/09/ 
2017 

12/24/ 
2017 

01/08/ 
2018 

02/22/ 
2018 

02/27/ 
2018 

Seagrass 
Cymodocea 
(1) 

57.4 56.7 54.4 66.7 58.3 

Seagrass 
Zostera 
Noltii (2) 

55.6 60 52.4 58.5 57.1 

Mudflat (5) 90 90 86.7 100 100 
Intertidal bare 

sediment (6) 
76.9 71.4 90.9 83.3 66.7 

Overall 
accuracy 

62.5 62.5 62.5 69.2 62.5 

Kappa index 0.448238 0.448763 0.45204 0.55118 0.447336  

Table 5 
Summary of the confusion matrices of the 5 classifications on the marine part 
(seagrass merged).   

12/09/ 
2017 

12/24/ 
2017 

01/08/ 
2018 

02/22/ 
2018 

02/27/ 
2018 

Seagrass 
without 
distinction 
(1*) 

93.8 95 96.2 98.1 95.1 

Mudflat (5) 90 90 86.7 100 100 
Intertidal bare 

sediment (6) 
76.9 71.4 90.9 83.3 66.7 

Overall 
accuracy 

91.3 91.3 94.2 95.2 91.3 

Kappa index 0.78095 0.784232 0.85987 0.879963 0.781257  
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Seagrass stores 10–15% of the ocean organic carbon (Duarte et al., 
2004; Kennedy and Björk, 2009), and are considered as autotrophic 
ecosystems acting as carbon sinks (Lavery et al. 2013). Indeed, the 
estimated net productivity of seagrass beds is 1.19 t C/ha/year, equiv
alent to 435 t CO2eq/km2/year on average (Duarte et al., 2010; Trégarot 

et al., 2017). Seagrass biomass and the sedimentary substrate are both 
involved in the storage of carbon, but their degradation can also act as a 
source of carbon (Pendleton et al. 2012). 

Recent studies by Gullström et al. (2018) showed that the capability 
of seagrass to store carbon is dependent on the species, the type of 

Fig. 8. Spatio-temporal variations in the distribution of the seagrass in an area of the PNBA, comparison between a 2003 SPOT-5 image in false colour infra-red (Top, 
© CNES – 2003, Distribution Airbus DS, all rights reserved) and a 2018 Sentinel-2 image in false color(Bottom, ©ESA, 2018). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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sediments, and the connectivity with adjacent ecosystems, highlighting 
the importance in mapping seagrass beds and associated ecosystems. 
Although the assessment of carbon storage potential in the marine 
ecosystems of the PNBA is limited by the availability of data, the extent 
of seagrass beds in the area (74% of mapped surfaces), makes them the 
most important component of carbon storage in the PNBA, compared to 
other ecosystems whose relative coverage reach 12% for sebkha, 9% for 
mudflats, 2% for salt marshes and 0.05% for mangroves. Mudflats might 
play a major role in the carbon storage thanks to the presence of 
microphytobenthos (Barnett, 2013), although we were not able to map 
the distribution of microphytobenthos density. Our results provide new 
elements on the global coverage of marine ecosystems in the PNBA. 
Complementary studies have to be carried out to quantify precisely 
carbon storage in the PNBA. 

The PNBA contains 772 km2 of seagrass, with 419 km2 of subtidal 
Cymodocea nodosa and 353 km2 of intertidal Zostera noltii. Their capa
bility to mitigate wave and current energy depends on the water level 
and the amount of vegetation in the water column, along with 

morphological characteristics of plants such as the rigidity, density, 
length and morphology of the leaves (Fonseca and Cahalan, 1992; Koch 
et al., 2006; Ward et al., 1984). In the PNBA, both species locally reach 
high densities and occupy a large part of the water column combining 
two important properties for coastal protection. The service of coastal 
protection is pressing in the context of climate change for low elevated 
dwellings as found in the PNBA. The mapping of coastal marine habitats, 
combined with the capacity of ecosystems to attenuate wave and current 
energy could highlight priority areas for conservation where environ
mental and socio-economic stakes are at risk of sea-level rise and 
flooding. 

The canopy of seagrass beds in the PNBA also allows juveniles of fish 
and invertebrates to find refuge against predators (Dewsbury et al., 
2016; Jackson et al., 2015; Schaffmeister et al., 2006). The Banc d’Ar
guin is likely an important nursery area for commercial fish and shrimps 
who use seagrass beds for refuge against predators (Gushchin and Fall, 
2012; Jager, 1993; Schaffmeister et al., 2006; van Etten, 2003). The 
function of nursery is essential to maintain adult population targeted by 
artisanal and commercial fisheries in the PNBA and outside the Park. 
Even the intertidal flats, that are covered by ponds (van der Laan and 
Wolff, 2006), provide a substantial function of nursery, particularly for 
shrimps (Schaffmeister et al., 2006). Although not visible on the maps 
using Sentinel-2 data, we showed that very high resolution SPOT 6 data 
could provide information on ecosystems distributed in small patches. 
Such data could also help identify intertidal ponds in the PNBA. 

Seagrass provide essential services to human communities. For 
instance, commercial fish or shrimp juveniles of some species can use 
intertidal ponds within seagrass as nurseries, refuge against predators 
(Dewsbury et al., 2016; Jackson et al., 2015; Schaffmeister et al., 2006). 
These ponds also reduce intra-specific competition for the resource 
(Heck et al., 2003). Although not visible on the maps using Sentinel-2 
data, we showed that very high resolution SPOT 6 data can provide 

Table 6 
Surface areas (km2) and percentage of surface detected on coastal marine eco
systems in the PNBA from Sentinel-2 imagery in February 2018.  

Classes Area (km2) % surface 

Seagrass Cymodocea nodosa 419 40 
Seagrass Zostera noltii 353 34 
Total Seagrass 772 74 
Mangroves 0.5 0.05 
Salt marshes 23 2 
Mudflats 98 9 
Intertidal bare sediment 21 2 
Sebkha 123 12  

Total 1037 100  

Fig. 9. Map of seagrass densities for Zostera noltii and Cymodocea nodosa in northern Tidra island (right panel), National Park of Banc d’Arguin, Mauritania.  
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information on ecosystems distributed in small patches. Such data can 
also help identify intertidal ponds in the PNBA. 

7. Conclusion 

This study updated ecosystem knowledge and maps of the marine 
and terrestrial ecosystems of the PNBA using Sentinel-2 data of 10 m 
resolution. Our results showed this sensor is an adequate tool to map the 
extent of marine ecosystems at a large scale. The wide swath of Sentinel- 
2 is very suitable for a global mapping approach, and its high temporal 
resolution ensures free regular updates for many years via the European 
Space Agency (ESA) Copernicus programme. Preprocessing and pro
cessing were developed entirely on open-source software and the 
methodology can easily be transferred to local actors for future updates 
of the maps. 

Our study provides the first seagrass mapping throughout the entire 
area of the PNBA, especially in the northern part that was not well- 
known so far. Our approach provides a method for the implementa
tion of seagrass extent surveying in the PNBA. Given the strong vari
ability of its distribution in time and space and its vulnerability towards 
natural and anthropic pressures, it is extremely relevant for conservation 
actions in this protected area. The dynamics of seagrass are also closely 
related to the dynamics of other ecosystems in the park, that is why we 
considered the whole marine ecosystems in this study. Further research 
on the PNBA should focus on (i) making such monitoring tool opera
tional for local actors of conservation, (ii) the integration of other data 
such as bathymetry, coastal and benthic habitat maps provided by 
agencies like ESA, (iii) and the interactions between human, animal 
species and marine ecosystems to better assess ecosystem services and 
reinforce conservation actions of the protected are of the PNBA. 
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Fig. 10. Comparison of mangroves’ detection (in red) between Sentinel-2 (A and B) and SPOT-6 (C and D) in the northern part of Mamghar, National Park of Banc 
d’Arguin, Mauritania. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jag.2021.102419. 

References 

Al-Kharusi, E.S., Tenenbaum, D.E., Abdi, A.M., Kutser, T., Karlsson, J., Bergström, A.K., 
Berggren, M., 2020. Large-scale retrieval of coloured dissolved organic matter in 
northern lakes using Sentinel-2 data. Remote Sens. 12 (1), 157. 

Bakirman, T., Gumusay, M.U., Tuneyb, I., 2016. Mapping of the seagrass cover along the 
Mediterranean coast of Turkey using Landsat 8 OLI images. Int. Arch. Photogramm., 
Remote Sens. Spatial Inform. Sci. 8. 

Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., Silliman, B.R., 2011. The 
value of estuarine and coastal ecosystem services. Ecol. Monogr. 81 (2), 169–193. 

Barnett, A., 2013. Regulation of photosynthetic activity of microphytobenthos and 
consequence on the temporal dynamics of primary production in intertidal mudflats 
on the Atlantic coast of Western Europe. Ph.D. thesis. University of La Rochelle, 
p. 360. 

Bramich, J., Bolch, C.J., Fischer, A., 2021. Improved red-edge chlorophyll-a detection for 
Sentinel 2. Ecol. Ind. 120, 106876. 

Caballero, I., Stumpf, R.P., 2020. Towards routine mapping of shallow bathymetry in 
environments with variable turbidity: contribution of Sentinel-2A/B satellites 
mission. Remote Sensing 12 (3), 451. 

Chen, S.N., Sanford, L.P., Koch, E.W., Shi, F., North, E.W., 2007. A nearshore model to 
investigate the effects of seagrass bed geometry on wave attenuation and suspended 
sediment transport. Estuaries Coasts 30 (2), 296–310. 

Cohen, J. (1960). A coefficient of agreement for nominal scales. Ed. Psychol. Measure. 20 
(1), 37-46. 

Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Lasram, F. B. R., Aguzzi, J., et al., 2010. 
The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PloS one, 
5(8), e11842. 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely 
sensed data. Remote Sens. Environ. 37 (1), 35–46. 

Congalton, R.G., Green, K., 1999. Assessing the accuracy of remotely sensed data: 
Principles and practices. Lewis Publishers, Boca Raton.  

Dekker, A., Brando, V., Anstee, J., Fyfe, S., Malthus, T., Karpouzli, E., 2007. Remote 
sensing of seagrass ecosystems: Use of spaceborne and airborne sensors. In 
Seagrasses: Biology, Ecologyand Conservation (pp. 347-359). Springer, Dordrecht. 
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IRD - AgroParisTech - PNBA, Maison de la Télédétection, Montpellier, 33 p., 
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Vahtmäe, E., Kutser, T., Martin, G., Kotta, J., 2006. Feasibility of hyperspectral remote 
sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea 
case study. Remote Sens. Environ. 101 (3), 342–351. 
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