Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Attentive Multi-stage Learning for Early Risk Detection of Signs of Anorexia and Self-harm on Social Media

Waleed Ragheb 1 Jérôme Azé 1 Sandra Bringay 1, 2 Maximilien Servajean 1, 2
1 ADVANSE - ADVanced Analytics for data SciencE
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Three tasks are proposed at CLEF eRisk-2019 for predicting mental disorder using users posts on Reddit. Two tasks (T1 and T2) focus on early risk detection of signs of anorexia and self-harm respectively. The other one (T3) focus on estimation of the severity level of depression from a thread of user submissions. In this paper, we present the participation of LIRMM (Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier) in both tasks on early detection (T1 and T2). The proposed model addresses this problem by modeling the temporal mood variation detected from user posts through multistage learning phases. The proposed architectures use only textual information without any hand-crafted features or dictionaries. The basic architecture uses two learning phases through exploration of state-of-theart deep language models. The proposed models perform comparably to other contributions.
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03525311
Contributeur : Isabelle Gouat Connectez-vous pour contacter le contributeur
Soumis le : jeudi 13 janvier 2022 - 17:28:41
Dernière modification le : samedi 15 janvier 2022 - 03:42:31

Fichier

paper_126.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : lirmm-03525311, version 1

Citation

Waleed Ragheb, Jérôme Azé, Sandra Bringay, Maximilien Servajean. Attentive Multi-stage Learning for Early Risk Detection of Signs of Anorexia and Self-harm on Social Media. CLEF 2019 Working Notes - Conference and Labs of the Evaluation Forum, Sep 2019, Lugano, Switzerland. pp.#126. ⟨lirmm-03525311⟩

Partager

Métriques

Les métriques sont temporairement indisponibles